Enter a problem...
Finite Math Examples
Step 1
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 2
Step 2.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.2
Simplify the exponent.
Step 2.2.1
Simplify the left side.
Step 2.2.1.1
Simplify .
Step 2.2.1.1.1
Multiply the exponents in .
Step 2.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.1.2
Cancel the common factor of .
Step 2.2.1.1.1.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.1.2.2
Move the leading negative in into the numerator.
Step 2.2.1.1.1.2.3
Factor out of .
Step 2.2.1.1.1.2.4
Cancel the common factor.
Step 2.2.1.1.1.2.5
Rewrite the expression.
Step 2.2.1.1.1.3
Cancel the common factor of .
Step 2.2.1.1.1.3.1
Factor out of .
Step 2.2.1.1.1.3.2
Cancel the common factor.
Step 2.2.1.1.1.3.3
Rewrite the expression.
Step 2.2.1.1.1.4
Multiply by .
Step 2.2.1.1.2
Simplify.
Step 2.2.2
Simplify the right side.
Step 2.2.2.1
Simplify .
Step 2.2.2.1.1
Rewrite the expression using the negative exponent rule .
Step 2.2.2.1.2
Simplify the denominator.
Step 2.2.2.1.2.1
Rewrite as .
Step 2.2.2.1.2.2
Apply the power rule and multiply exponents, .
Step 2.2.2.1.2.3
Cancel the common factor of .
Step 2.2.2.1.2.3.1
Cancel the common factor.
Step 2.2.2.1.2.3.2
Rewrite the expression.
Step 2.2.2.1.2.4
Raise to the power of .
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form: